
Dynamic Programming

There are some situations in which recursion can be massively
inefficient. For example, the standard Fibonacci recursion

Fib(n) = Fib(n-1) + Fib(n-2)

computes the same values over and over. The calculation of
Fib(40) computes Fib(4) over 24,000,000 times.

Sometimes we can keep the advantages of recursion without this
duplicated effort by just making a table of results; if the recursive
function sees that a result has already been computed, it returns
this value instead of recursing.

This technique goes by many names -- "function
caching" (i.e, creating a cache for the recursive
function), "memo-izing" (teaching the recursion
to write itself memos) and Dynamic
Programming, which is the preferred modern
term.

This assumes that we have an array called Values. Since the
Fibonacci numbers are all non-negative, I initialized all of the
entries of Values to -1. Any non-negative entry indicates an
actual value of the Fib function.

public static int Fib(int n) {
if (Values[n] >= 0)

return Values[n];
else if (n == 0)

return 0;
else if (n == 1)

return 1;
else {

int t = Fib(n-1) + Fib(n-2);
Values[n] = t;
return t;

}
}

Here is another example. Joe, because he didn't hand in his labs
on time, is now working for FlyByNight Inc. stuffing widgets into
boxes. Because FlyByNight doesn't want to waste money on
packing material, the boxes must be filled exactly to capacity.
The available boxes have capacities 25, 21, 10, 5, 1. Joe can use
as many of each size as necessary. How can he choose boxes to
minimize the number of boxes needed for a given order.

For example, suppose someone orders 43 widgets. Joe could
pack them into

6 boxes, of sizes 25, 10, 5, 1, 1, 1

or 7 boxes of sizes 10, 10, 10, 10, 1, 1, 1

or 3 boxes of sizes 21, 21, 1.

The last of these is the best choice.

Naturally, we want to write a function that takes in an order size
and computes both the minimum number of boxes needed and
which boxes should be used.

We will do this in a sequence of steps:
A. First we will find an easy recursion that answers the

question: How many boxes are needed.
B. This recursion will be very inefficient, like the

Fibonacci function. We will turn it into a Dynamic
Program to eliminate redundant calculations.

C. Finally, we will add a function that prints the actual
box sizes to use.

Suppose we have 15 items to pack and box sizes of 20, 10, 7,
and 1. We can't use the largest box because it is too big, so we
really have only 3 options: use the box of size 10, and find a way
to pack the remaining 5 items efficiently, use a box of size 7 and
find a way to pack the remaining 8 items efficiently, or use a
box of size 1 and then pack the remaining 14 items.

Recursion can take the problem from there: to find the
minimum number of boxes for any number of items, we loop
through the possible sizes for the first box, and then recurse to
find the minimum number for the remaining items. We return
1 plus the value of the recursive call for the best choice.

Clicker Question: Let's see if you remember the
packing problem. We have boxes with sizes 1, 5,
10, 21 and 25. The boxes must be packed to
capacity. l have to pack 47 widgets. What is the
best way?

A. Use boxes of size 20, 20 and 7
B. Use boxes of size 21, 25, and 1
C. Use boxes of size 21, 21, and 5
D. Answers (B) and (C) are both correct

What is our base case? We can't do better
than 1 box, so if we get a number of items that
fits exactly into one of the boxes, we return 1
without recursing.

Here is the recursive algorithm for NumBoxes:
Suppose we are trying to pack s items. If we use a
box of size n then NumBoxes(s) = 1+NumBoxes(s-n).
So we loop through all of the boxes and find the
smallest value of 1+NumBoxes(s-BoxSizes[j]); that is
the value of NumBoxes(s).

Here is our code for the first step:

public static int NumBoxes(int items) {

for (int i = 0; i < BoxSizes.length; i++)
if (BoxSizes[i] == items)

return 1;
int min = items;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min)

min = t;
}

}
return min;

}

It might look like NumBoxes only recurses once, but that is
because the recursive call is inside a loop. Each call to NumBoxes
recurses once for each box size. If there are 10 different boxes,
this could be even more inefficient than the Fibonacci function.

We will turn this into a Dynamic Program the same way we
handled the Fibonacci function -- keeping an array (which we'll
call Counts) that holds values of NumBoxes as we find them.

We can use the Java initialization of 0 since any assignment we
will make to this array will be strictly positive.

We will start our call to NumBoxes by checking whether the
argument has a non-zero entry in Counts. We can avoid the base
cases if we just initialize the Counts entry for each box size to 1,
since we can't do any better than putting the items into one box.

Here is the resulting function:

public static int NumBoxes(int items) {
if (Counts[items] > 0)

return Counts[items];
int min = items;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min)

min = t;
}

}
Counts[items] = min;
return min;

}

The only step left if finding the actual boxes to use to achieve the
minimum we have calculated. We could build up a string or list
of the right boxes as we go, but the code for that becomes
obtuse. An easier solution is to just store the last box we used to
achieve its minimum. For example, if we have 15 items to pack
and we just chose to use a box that holds 7 of these items, then
we must have already found a solution to the problem of packing
8 boxes. So we print our size 7, then go down to the last box we
chose to pack 8 items. This was also a 7, so we print that and go
down to the entry for 1 item, which of course is a box of size 1.
Altogether we print 7 7 1, only storing one box for each number
of items.

Here is the final version of NumBoxes:
public static int NumBoxes(int items) {

if (Counts[items] > 0)
return Counts[items];

int min = items;
int bestBox = 1;
for (int j = 0; j < BoxSizes.length; j++) {

if (BoxSizes[j] < items) {
int t = 1+ NumBoxes(items-BoxSizes[j]);
if (t < min) {

min = t;
bestBox = BoxSizes[j];

}
}

}
Counts[items] = min;
LastBox[items] = bestBox;
return min;

}

Here's how we print a solution after the LastBox array is filled
out:

public static void Print(int items) {
while (items > 0) {

System.out.printf("%d ", LastBox[items]);
items -= LastBox[items];

}
System.out.println();

}

The initialization code is

Counts = new int[50]; // or maximum problem size
LastBox = new int[50];
for (int i = 0; i < BoxSizes.length; i++) {

int size = BoxSizes[i];
Counts[size] = 1;
LastBox[size] = size;

}

